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1 Introduction to Markov chains

Last time we talked about random walks and cover time: the time to reach all nodes in
the graph. By the way, in one of the proofs we showed that if we think of our state as
being on the edges, then the stationary distribution of this walk is uniform on all 2m edge-
directions. Note that this means that in the conventional view (state is on the nodes) the
propability of being on a node is proportional to its degree. We can also see this directly by
observing what happens if we initialize to this distribution and take one step of the walk.

A random walk on a graph is a special case of a random walk on a Markov chain.

A Markov chain with n states is a random walk process defined by an n × n matrix P
where Pij is the probability of moving to state j given that you currently are in state i. So
all entries are non-negative and the row sums are equal to 1. Equivalently, if you describe
your current state as a row vector q then your state after one step of the process is qP.

If the underlying graph (considering only those directed edges with non-zero probability)
is strongly connected (meaning you can reach any state from any other state) then the chain
is irreducible. We also say that an irreducible Markov chain is aperiodic if, for any starting
distribution q, there exists some time T such that qPT has nonzero probability on every
state.

For example, a random walk on a connected bipartite graph would be irreducible but not
aperiodic, since if you start at some node on the left, then for any time T, you would either
have zero probability of being on the right or zero probability of being on the left depend-
ing on whether T is even or odd respectively. However, if you add self-loops (at each step
there is now some nonzero chance of staying put) then the chain becomes aperiodic.

A stationary distribution π is a left eigenvector of eigenvalue 1. That is, π = πP.

Note, that this is the largest eigenvalue. This is because for any vector v (even if it has nega-
tive entries) the sum of the absolute values of the entries cannot increase when multiplying
by P.

A Markov chain is symmetric if the matrix P is symmetric. For instance, a random walk
on an undirected graph where each node has the same degree is symmetric. We will focus
here on symmetric Markov chains. Note that for a symmetric Markov chain, all column
sums are equal to 1 so the uniform distribution is a stationary distribution.
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2 Rapid mixing

In many algorithmic settings, we will define a Markov chain on a “solution space” whose
size is exponential in the natural problem parameters. We have no hope of visiting the
entire space, but we would at least like to get close to the stationary distribution. This is
used in simulated annealing, for example. Note that it is possible to get close to the station-
ary distribution much more quickly than visiting the entire graph. We will in particular
say that a Markov chain is rapidly mixing if from any start state we can get close to the
stationary distribution in polylog(n) steps. (We’ll define our notion of “close” shortly).

The main theorem we’ll prove is that if a symmetric Markov chain P has the property that
the eigenvalues corresponding to all eigenvectors that are not the stationary distribution
π have magnitude noticeably less than 1, then the chain is rapidly mixing. In fact, we’ll
prove something slightly more general:

Theorem 2.1 Say P is a Markov chain with real eigenvalues and orthogonal eigenvectors. Then,
for any starting distribution q(0), the L2 distance between the distribution after T steps q(T) =
q(0)PT and the stationary distribution π is at most |λ2|T where λ2 is the eigenvalue of largest
absolute value among eigenvectors orthogonal to π.

Theorem 2.1 implies that if we have an eigenvalue gap of some value ε > 0, then for any
constant c it takes only T = O( log n

ε ) steps to get
∥∥∥q(T) − π

∥∥∥
2
≤ 1/nc.

You might ask what happened to irreducibility and aperiodicity in this theorem. The an-
swer is that in those cases, |λ2| = 1 so the theorem becomes vacuous. For example, in a
complete bipartite graph, a vector with all nodes on the left assigned value 1/n and all
nodes on the right assigned value −1/n is an eigenvector of eigenvalue −1.

Proof: [Theorem 2.1] Let’s say the orthogonal eigenvectors are v1, . . . , vn with v1 = π.
Since the eigenvectors are a basis, we can write q(0) as:

q(0) = c1π + c2v2 + . . . + cnvn,

for some values c1, . . . , cn. After T steps of the walk, we have:

q(T) = c1π + c2λT
2 v2 + . . . + cnλT

n vn.

Notice that for |λ2| < 1 (which we may assume since otherwise the theorem is vacuously
true) then as T → ∞, this approaches c1π and therefore we must have c1 = 1. So,∥∥∥q(T) − π

∥∥∥
2

=
∥∥∥c2λT

2 v2 + . . . + cnλT
n vn

∥∥∥
2

≤ |λ2|T ‖c2v2 + . . . + cnvn‖2 ≤ |λ2|T (by orthogonality)
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